All
BE/B.Tech
MBA/PGDM
MBBS
ME/M.Tech
B.Sc
BA
B.Com
BCA
BBA/BMS
B.Sc (Nursing)

Ranking

College ranked based on real data

Indiatoday - 1740
Collegedunia - 1406
IIRF - 1684
Outlook - 1318
NIRF - 1301
Top Ranked Colleges in India ›

Find Colleges

Discover 19000+ colleges via preferences

Best MBA colleges in India
Best BTech colleges in India
Discover Top Colleges in India ›

Compare Colleges

Compare on the basis of rank, fees, etc.

IIT Madras vs IIT Delhi
IIT Madras vs IIT Bombay
Compare Colleges ›

Exams

Know more about your exams

B.Com
B.Sc
B.Sc (Nursing)
BA
BBA/BMS
BCA
BE/B.Tech
Check All Entrance Exams in India ›

College Predictor

Know your college admission chances

JEE Main
JEE Advanced
CAT
NEET
GATE
NMAT
MAT
XAT
Find Where you may get Admission ›

Course Finder

Discover top courses in Indian Colleges 2025

BE/B.Tech - 963
MBA/PGDM - 1159
ME/M.Tech - 1221
B.Sc - 1052
Get Top Courses in Indian Colleges ›

Your Gateway to Top Colleges & Exams

Discover thousands of questions, past papers, college details and all exam insights – in one place.

Popular Colleges

Top Exams

JEE MainJEE Main
JEE AdvJEE Advanced
NEET UGNEET UG
BITSATBITSAT
COMEDKCOMEDK
VITEEEVITEEE
WBJEEWBJEE

A particle of mass M=0.2 kg is initially at rest in the xy-plane at a point x=−l, y=−h, where l=10 m and h=1 m....

A particle of mass M=0.2 kg is initially at rest in the xy-plane at a point x=l, y=h, where l=10 m and h=1 m. The particle is accelerated at time t=0 with a constant acceleration a=10 m s-2 along the positive x-direction. Its angular momentum and torque with respect to the origin, in SI units, are represented by L and  τ, respectively. i^, j^ and k^ are unit vectors along the positive x,y and z-directions, respectively. If k^=i^×j^ then which of the following statement(s) is (are) correct?
The particle arrives at the point x=l, y=-h at time t=2 s.
τ=2k^ when the particle passes through the point x=l, y=-h.
L=4k^ when the particle passes through the point x=l, y=-h.
τ=k^ when the particle passes through the point x=0, y=-h.
Solution:

At t=2 s:

displacement along +X axis

=12×10×t2

=12×10×4=20 m

Hence, particle arrives at 10,-1

At x=l, y=h,

τ=r×F

=10i^j^×0.2×10i^=2k^ N m

L=r×p=10i^j^×0.2×vi^

and vat t=2s=0+10×2=20 m s-1

  L=10i^j^×4i^=4k^ N m s

At x=0,y=h:

r=0i^j^

F=2i^

  τ=r×F=2k^ N m