Processing math: 100%
All
BE/B.Tech
MBA/PGDM
MBBS
ME/M.Tech
B.Sc
BA
B.Com
BCA
BBA/BMS
B.Sc (Nursing)

Ranking

College ranked based on real data

Indiatoday - 1740
Collegedunia - 1406
IIRF - 1684
Outlook - 1318
NIRF - 1301
Top Ranked Colleges in India ›

Find Colleges

Discover 19000+ colleges via preferences

Best MBA colleges in India
Best BTech colleges in India
Discover Top Colleges in India ›

Compare Colleges

Compare on the basis of rank, fees, etc.

IIT Madras vs IIT Delhi
IIT Madras vs IIT Bombay
Compare Colleges ›

Exams

Know more about your exams

B.Com
B.Sc
B.Sc (Nursing)
BA
BBA/BMS
BCA
BE/B.Tech
Check All Entrance Exams in India ›

College Predictor

Know your college admission chances

JEE Main
JEE Advanced
CAT
NEET
GATE
NMAT
MAT
XAT
Find Where you may get Admission ›

Course Finder

Discover top courses in Indian Colleges 2025

BE/B.Tech - 963
MBA/PGDM - 1159
ME/M.Tech - 1221
B.Sc - 1052
Get Top Courses in Indian Colleges ›

Your Gateway to Top Colleges & Exams

Discover thousands of questions, past papers, college details and all exam insights – in one place.

Popular Colleges

Top Exams

JEE MainJEE Main
JEE AdvJEE Advanced
NEET UGNEET UG
BITSATBITSAT
COMEDKCOMEDK
VITEEEVITEEE
WBJEEWBJEE

A series LCR circuit is connected to a 45 sin(ωt) Volt source. The resonant...

A series LCR circuit is connected to a 45 sin(ωt) Volt source. The resonant angular frequency of the circuit is 105 rad s1 and current amplitude at resonance is I0. When the angular frequency of the source is ω=8×104 rad s1, the current amplitude in the circuit is 0.05 I0. If L=50 mH, match each entry in List-I with an appropriate value from List-II and choose the correct option.

  List-I   List-II
P I0 in mA 1 44.4
Q The quality factor of the circuit 2 18
R The bandwidth of the circuit in rad s1 3 400
S The peak power dissipated at resonance in Watt 4 2250
    5 500
P2, Q3, R5, S1
P3, Q1, R4, S2
P4, Q5, R3, S1
P4, Q2, R1, S5
Solution:

Resonant angular frequency is given by, 1LC=105

1(50×10-3)C=105C=2×10-9 F

Given: V=45sin(ωt). Therefore, V0=45.

Now, I0=V0R=45R               ...(ii)

Inductive reactance, XL=ωL=(8×104)×(50×10-3)=4000 Ω.

and capacitive reactance, XC=1ωC=1(8×104)×(2×10-9)=6250 Ω.

For new current amplitude, we can write

0.05I0=45R2+(XL-XC)20.05I0=45R2+(6250-4000)20.05×45R=45R2+(6250-4000)2R2+(6250-4000)2=R2(0.05)2R2+(2250)2=400R2R=2250399=112.67 Ω

Where XL0=XC0 are at resonant frequencies

On solving, I0=45R400 mA

Quality factor Q=XLR44.44

Now, Q=ω0ωω2250 rad s-1.

Peak power =45×4001000 W=18 W

Therefore, P3, Q1, R4, S2.