All
BE/B.Tech
MBA/PGDM
MBBS
ME/M.Tech
B.Sc
BA
B.Com
BCA
BBA/BMS
B.Sc (Nursing)

Ranking

College ranked based on real data

Indiatoday - 1740
Collegedunia - 1406
IIRF - 1684
Outlook - 1318
NIRF - 1301
Top Ranked Colleges in India ›

Find Colleges

Discover 19000+ colleges via preferences

Best MBA colleges in India
Best BTech colleges in India
Discover Top Colleges in India ›

Compare Colleges

Compare on the basis of rank, fees, etc.

IIT Madras vs IIT Delhi
IIT Madras vs IIT Bombay
Compare Colleges ›

Exams

Know more about your exams

B.Com
B.Sc
B.Sc (Nursing)
BA
BBA/BMS
BCA
BE/B.Tech
Check All Entrance Exams in India ›

College Predictor

Know your college admission chances

JEE Main
JEE Advanced
CAT
NEET
GATE
NMAT
MAT
XAT
Find Where you may get Admission ›

Course Finder

Discover top courses in Indian Colleges 2025

BE/B.Tech - 963
MBA/PGDM - 1159
ME/M.Tech - 1221
B.Sc - 1052
Get Top Courses in Indian Colleges ›

Your Gateway to Top Colleges & Exams

Discover thousands of questions, past papers, college details and all exam insights – in one place.

Popular Colleges

Top Exams

JEE MainJEE Main
JEE AdvJEE Advanced
NEET UGNEET UG
BITSATBITSAT
COMEDKCOMEDK
VITEEEVITEEE
WBJEEWBJEE

According to Bohr's theory \(E_n=\) Total energy, \(K_n=\) Kinetic energy, \(V_n=\) Potential energy,...

According to Bohr's theory \(E_n=\) Total energy, \(K_n=\) Kinetic energy, \(V_n=\) Potential energy, \(r_n=\) Radius of \(n\)th orbit


(A) R, (B) Q, (C) P, (D) Q

(A) S, (B) R, (C) R, (D) S

(A) R, (B) Q, (C) P, (D) S

(A) S, (B) P, (C) R, (D) Q
Solution:
According to Bohr's theory,
Total energy is \(E_n=K_n+V_n\)
Kinetic energy \(=K_n=\frac{1}{8 \pi \varepsilon_0} \cdot \frac{Z e^2}{r}\)
Potential energy \(=V_n=\frac{1}{4 \pi \varepsilon_0} \cdot \frac{Z e^2}{r}\)
\(\therefore \quad E_n=\frac{1}{8 \pi \varepsilon_0} \cdot \frac{Z e^2}{r}-\frac{1}{4 \pi \varepsilon_0} \cdot \frac{Z e^2}{r}\)
Radius of \(n\)th orbit \(\left(r_n\right)=\frac{n^2 h^2 \varepsilon_0}{\pi m Z e^2}\) \(\) E_n=-\frac{m e^4}{8 \varepsilon_0^2 h^2} \times \frac{1}{n^2} \(\) (A) \(\frac{V_n}{K_n}=\frac{-\frac{1}{4 \pi \varepsilon_0} \cdot \frac{Z e^2}{r}}{\frac{1}{8 \pi \varepsilon_0} \cdot \frac{Z e^2}{r}}=-2\)
Hence, \((A)\) match with \((R)\).
(B) \(E_n \propto \frac{1}{n^2}\) or \(E_n \propto \frac{1}{r_n}\)
Radius of \(n\)th orbit \(r_n \propto E_n^x\) \(\therefore \quad x=-1\)
Hence, (B) match with (Q).
(C) Angular momentum \(=\frac{h}{2 \pi} \sqrt{l(l+1) l}=0,1,2, \ldots\)
For the lower orbit \(n=1\)
\(\therefore \quad l=0\) and \(m=0\)
Hence, angular momentum of lowest orbit \(=\frac{h}{2 \pi} \sqrt{0(0 H)}=0\)
(C) match with (P)
(D) \(\frac{1}{r^n} \propto Z^y\) as \(r_n \propto \frac{1}{Z} \therefore y=1\)
Hence, (D) match with (S).