According to Bohr's theory En= Total energy, Kn= Kinetic energy, Vn= Potential energy,...
According to Bohr's theory En= Total energy, Kn= Kinetic energy, Vn= Potential energy, rn= Radius of nth orbit


Solution:
According to Bohr's theory,
Total energy is En=Kn+Vn
Kinetic energy =Kn=18πε0⋅Ze2r
Potential energy =Vn=14πε0⋅Ze2r
∴En=18πε0⋅Ze2r−14πε0⋅Ze2r
Radius of nth orbit (rn)=n2h2ε0πmZe2 E_n=-\frac{m e^4}{8 \varepsilon_0^2 h^2} \times \frac{1}{n^2} (A) VnKn=−14πε0⋅Ze2r18πε0⋅Ze2r=−2
Hence, (A) match with (R).
(B) En∝1n2 or En∝1rn
Radius of nth orbit rn∝Exn ∴x=−1
Hence, (B) match with (Q).
(C) Angular momentum =h2π√l(l+1)l=0,1,2,…
For the lower orbit n=1
∴l=0 and m=0
Hence, angular momentum of lowest orbit =h2π√0(0H)=0
(C) match with (P)
(D) 1rn∝Zy as rn∝1Z∴y=1
Hence, (D) match with (S).
Total energy is En=Kn+Vn
Kinetic energy =Kn=18πε0⋅Ze2r
Potential energy =Vn=14πε0⋅Ze2r
∴En=18πε0⋅Ze2r−14πε0⋅Ze2r
Radius of nth orbit (rn)=n2h2ε0πmZe2 E_n=-\frac{m e^4}{8 \varepsilon_0^2 h^2} \times \frac{1}{n^2} (A) VnKn=−14πε0⋅Ze2r18πε0⋅Ze2r=−2
Hence, (A) match with (R).
(B) En∝1n2 or En∝1rn
Radius of nth orbit rn∝Exn ∴x=−1
Hence, (B) match with (Q).
(C) Angular momentum =h2π√l(l+1)l=0,1,2,…
For the lower orbit n=1
∴l=0 and m=0
Hence, angular momentum of lowest orbit =h2π√0(0H)=0
(C) match with (P)
(D) 1rn∝Zy as rn∝1Z∴y=1
Hence, (D) match with (S).
Join the conversation