All
BE/B.Tech
MBA/PGDM
MBBS
ME/M.Tech
B.Sc
BA
B.Com
BCA
BBA/BMS
B.Sc (Nursing)

Ranking

College ranked based on real data

Indiatoday - 1740
Collegedunia - 1406
IIRF - 1684
Outlook - 1318
NIRF - 1301
Top Ranked Colleges in India ›

Find Colleges

Discover 19000+ colleges via preferences

Best MBA colleges in India
Best BTech colleges in India
Discover Top Colleges in India ›

Compare Colleges

Compare on the basis of rank, fees, etc.

IIT Madras vs IIT Delhi
IIT Madras vs IIT Bombay
Compare Colleges ›

Exams

Know more about your exams

B.Com
B.Sc
B.Sc (Nursing)
BA
BBA/BMS
BCA
BE/B.Tech
Check All Entrance Exams in India ›

College Predictor

Know your college admission chances

JEE Main
JEE Advanced
CAT
NEET
GATE
NMAT
MAT
XAT
Find Where you may get Admission ›

Course Finder

Discover top courses in Indian Colleges 2025

BE/B.Tech - 963
MBA/PGDM - 1159
ME/M.Tech - 1221
B.Sc - 1052
Get Top Courses in Indian Colleges ›

Your Gateway to Top Colleges & Exams

Discover thousands of questions, past papers, college details and all exam insights – in one place.

Popular Colleges

Top Exams

JEE MainJEE Main
JEE AdvJEE Advanced
NEET UGNEET UG
BITSATBITSAT
COMEDKCOMEDK
VITEEEVITEEE
WBJEEWBJEE

Four identical thin, square metal sheets, \(S_1, S_2, S_3\) and \(S_4\), each of...

Four identical thin, square metal sheets, \(S_1, S_2, S_3\) and \(S_4\), each of side \(a\) are kept parallel to each other with equal distance \(d(\ll a)\) between them, as shown in the figure. Let \(C_0=\varepsilon_0 a^2 / d\), where \(\varepsilon_0\) is the permittivity of free space.

Match the quantities mentioned in List-I with their values in List-II and choose the correct option.

\(\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 5\)
\(\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 1\)
\(\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 1\)
\(\mathrm{P} \rightarrow 3\); \(\mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 5\)
Solution:
For P

All are in series
\(\begin{gathered}
C_{e q}=\frac{C_0}{3} \\
P \rightarrow(3)
\end{gathered}\)
For Q

\(\begin{gathered}
C_{e q}=\frac{C_0}{2} \\
Q \rightarrow(2)
\end{gathered}\)
For R

\(\begin{gathered}
C_{e q}=\frac{2 C}{3} \\
R \rightarrow(4)
\end{gathered}\)
For S

\(\begin{aligned}
& \Rightarrow C_{e q}=3 C_0 \\
& S \rightarrow(1)
\end{aligned}\)