In the options given below, let \(E\) denote the rest mass energy of a nucleus and \(n\) a neutron. The correct option is
\(E\left({ }_{92}^{236} \mathrm{U}\right)>E\left({ }_{53}^{137} \mathrm{I}\right)+E\left({ }_{36}^{97} Y\right)+2 E(n)\)
\(\left.E{ }_{92}^{236} \mathrm{U}\right) < E\left({ }_{53}^{137} \mathrm{I}\right)+E\left({ }_{39}^{97} Y\right)+2 E(n)\)
\(E\left({ }_{92}^{236} \mathrm{U}\right) < E\left(5_{56}^{140} \mathrm{Ba}\right)+E\left({ }_{36}^{94} \mathrm{Kr}\right)+2 E(n)\)
\(E\left(9_{92}^{236} \mathrm{U}\right) < E\left(5_{56}^{140} \mathrm{Ba}\right)+E\left({ }_{36}^{94} \mathrm{Kr}\right)+2 E(n)\)
Solution:
Rest mass of parent nucleus should be greater than the rest mass of daughter nuclei. Therefore, option (a) will be correct.
Join the conversation