The kinetic energy of an electron in the second Bohr orbit of a...
The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is [a0 is Bohr radius ] :
Solution:
As per Bohr's postulate,
$mvr=nh2Ï€ So, v=nh2Ï€mrKE=12mv2 So, KE=12m(nh2Ï€mr)2$
Since, r=ao×n2z
So, for 2nd Bohr orbit
$r=ao×221=4aoKE=12m(22h24π2m2×(4ao)2)=h232π2ma2o$
$mvr=nh2Ï€ So, v=nh2Ï€mrKE=12mv2 So, KE=12m(nh2Ï€mr)2$
Since, r=ao×n2z
So, for 2nd Bohr orbit
$r=ao×221=4aoKE=12m(22h24π2m2×(4ao)2)=h232π2ma2o$
Join the conversation