The kinetic energy of an electron in the second Bohr orbit of a...
The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is \(\left[a_{0}\right.\) is Bohr radius \(]\) :
Solution:
As per Bohr's postulate,
$\begin{array}{l}
m v r=\frac{n h}{2 \pi} \quad \text { So, } v=\frac{n h}{2 \pi m r} \\
\mathrm{KE}=\frac{1}{2} m v^{2} \quad \text { So, } \mathrm{KE}=\frac{1}{2} m\left(\frac{n h}{2 \pi m r}\right)^{2}
\end{array}$
\(\text { Since, } r=\frac{a_{\mathrm{o}} \times n^{2}}{z}\)
So, for \(2^{\text {nd }}\) Bohr orbit
$\begin{array}{l}
r=\frac{a_{\mathrm{o}} \times 2^{2}}{1}=4 a_{\mathrm{o}} \\
\mathrm{KE}=\frac{1}{2} m\left(\frac{2^{2} h^{2}}{4 \pi^{2} m^{2} \times\left(4 a_{\mathrm{o}}\right)^{2}}\right)=\frac{h^{2}}{32 \pi^{2} m a_{\mathrm{o}}^{2}}
\end{array}$
$\begin{array}{l}
m v r=\frac{n h}{2 \pi} \quad \text { So, } v=\frac{n h}{2 \pi m r} \\
\mathrm{KE}=\frac{1}{2} m v^{2} \quad \text { So, } \mathrm{KE}=\frac{1}{2} m\left(\frac{n h}{2 \pi m r}\right)^{2}
\end{array}$
\(\text { Since, } r=\frac{a_{\mathrm{o}} \times n^{2}}{z}\)
So, for \(2^{\text {nd }}\) Bohr orbit
$\begin{array}{l}
r=\frac{a_{\mathrm{o}} \times 2^{2}}{1}=4 a_{\mathrm{o}} \\
\mathrm{KE}=\frac{1}{2} m\left(\frac{2^{2} h^{2}}{4 \pi^{2} m^{2} \times\left(4 a_{\mathrm{o}}\right)^{2}}\right)=\frac{h^{2}}{32 \pi^{2} m a_{\mathrm{o}}^{2}}
\end{array}$
Join the conversation