Loading [MathJax]/jax/output/CommonHTML/jax.js
All
BE/B.Tech
MBA/PGDM
MBBS
ME/M.Tech
B.Sc
BA
B.Com
BCA
BBA/BMS
B.Sc (Nursing)

Ranking

College ranked based on real data

Indiatoday - 1740
Collegedunia - 1406
IIRF - 1684
Outlook - 1318
NIRF - 1301
Top Ranked Colleges in India ›

Find Colleges

Discover 19000+ colleges via preferences

Best MBA colleges in India
Best BTech colleges in India
Discover Top Colleges in India ›

Compare Colleges

Compare on the basis of rank, fees, etc.

IIT Madras vs IIT Delhi
IIT Madras vs IIT Bombay
Compare Colleges ›

Exams

Know more about your exams

B.Com
B.Sc
B.Sc (Nursing)
BA
BBA/BMS
BCA
BE/B.Tech
Check All Entrance Exams in India ›

College Predictor

Know your college admission chances

JEE Main
JEE Advanced
CAT
NEET
GATE
NMAT
MAT
XAT
Find Where you may get Admission ›

Course Finder

Discover top courses in Indian Colleges 2025

BE/B.Tech - 963
MBA/PGDM - 1159
ME/M.Tech - 1221
B.Sc - 1052
Get Top Courses in Indian Colleges ›

Your Gateway to Top Colleges & Exams

Discover thousands of questions, past papers, college details and all exam insights – in one place.

Popular Colleges

Top Exams

JEE MainJEE Main
JEE AdvJEE Advanced
NEET UGNEET UG
BITSATBITSAT
COMEDKCOMEDK
VITEEEVITEEE
WBJEEWBJEE

The standard state Gibb's free energies of formation of  C (graphite) and C (diamond) at...

The standard state Gibb's free energies of formation of  C (graphite) and C (diamond) at T=298 K are
ΔfGo[C (graphite]=0 kJ mol-1
ΔfGo[C (diamond)]=2.9 kJ mol-1
The standard state means that the pressure should be 1 bar, and substance should be pure at a given temperature. The conversion of graphite [C (graphite)] to diamond [C (diamond)] reduces its volume by 2×10-6 m3 mol-1 . If C (graphite) is converted to C (diamond) isothermally at T=298 K, the pressure at which C (graphite) is in equilibrium with C (diamond), is
[Useful information: 1 J=1 kg m2 s-2, 1 Pa=1 kg m-1s-2; 1bar=105Pa]
14501 bar
29001 bar
58001 bar
1450 bar
Solution:

C(graphite)→C(diamond); Î”Go=ΔfGodiamond-ΔfGographite=2.9 kJ/mol  at 1 bar

As dGT=V.dP

ΔG2∫ΔG1d(ΔGT)= P2∫P1ΔV.dP

ΔG2-ΔG1=ΔV. (P2-P1)

(2.9×103-0)=(-2×10-6) (1-P2)

P2-1=2.9×1032×10-6Pa=1.45×104 bar

P2=14501  bar.