All
BE/B.Tech
MBA/PGDM
MBBS
ME/M.Tech
B.Sc
BA
B.Com
BCA
BBA/BMS
B.Sc (Nursing)

Ranking

College ranked based on real data

Indiatoday - 1740
Collegedunia - 1406
IIRF - 1684
Outlook - 1318
NIRF - 1301
Top Ranked Colleges in India ›

Find Colleges

Discover 19000+ colleges via preferences

Best MBA colleges in India
Best BTech colleges in India
Discover Top Colleges in India ›

Compare Colleges

Compare on the basis of rank, fees, etc.

IIT Madras vs IIT Delhi
IIT Madras vs IIT Bombay
Compare Colleges ›

Exams

Know more about your exams

B.Com
B.Sc
B.Sc (Nursing)
BA
BBA/BMS
BCA
BE/B.Tech
Check All Entrance Exams in India ›

College Predictor

Know your college admission chances

JEE Main
JEE Advanced
CAT
NEET
GATE
NMAT
MAT
XAT
Find Where you may get Admission ›

Course Finder

Discover top courses in Indian Colleges 2025

BE/B.Tech - 963
MBA/PGDM - 1159
ME/M.Tech - 1221
B.Sc - 1052
Get Top Courses in Indian Colleges ›

Your Gateway to Top Colleges & Exams

Discover thousands of questions, past papers, college details and all exam insights – in one place.

Popular Colleges

Top Exams

JEE MainJEE Main
JEE AdvJEE Advanced
NEET UGNEET UG
BITSATBITSAT
COMEDKCOMEDK
VITEEEVITEEE
WBJEEWBJEE

Using the data provided, calculate the multiple bond energy \(\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)\) of a...

Using the data provided, calculate the multiple bond energy \(\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)\) of a \(\mathrm{C} \equiv \mathrm{C}\) bond in \(\mathrm{C}_{2} \mathrm{H}_{2}\). That energy is (take the bond energy of a \(\mathrm{C}-\mathrm{H}\) bond as \(350 \mathrm{~kJ} \mathrm{~mol}^{-1}\) ) \(2 \mathrm{C}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{HC}=\mathrm{CH}(\mathrm{g}) ; \Delta \mathrm{H}=225 \mathrm{~kJ} \mathrm{~mol}^{-1}\) \(2 \mathrm{C}(\mathrm{s}) \longrightarrow 2 \mathrm{C}(\mathrm{g}) ; \Delta \mathrm{H}=1410 \mathrm{~kJ} \mathrm{~mol}^{-1}\) \(\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}(\mathrm{g}) ; \Delta \mathrm{H}=330 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
1165
837
865
815
Solution:
(i) \(2 \mathrm{C}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}(\mathrm{g})\)

\(\Delta \mathrm{H}=225 \mathrm{~kJ} \mathrm{~mol}^{-1}\)

(ii) \(2 \mathrm{C}(\mathrm{s}) \longrightarrow 2 \mathrm{C}(\mathrm{g}) \Delta \mathrm{H}=1410 \mathrm{~kJ} \mathrm{~mol}^{-1}\)

(iii) \(\mathrm{H}_{2}\) (g) \(\longrightarrow 2 \mathrm{H}\) (g) \(\Delta \mathrm{H}=330 \mathrm{~kJ} \mathrm{~mol}^{-1}\)

From equation (i) :

$\begin{array}{l}

225=\left[2 \times \Delta \mathrm{H}_{\mathrm{C}(\mathrm{s}) \longrightarrow \mathrm{C}(\mathrm{g})}+1 \times \mathrm{BE}_{\mathrm{H}-\mathrm{H}}\right] \\

-\left[2 \times \mathrm{BE}_{\mathrm{C}-\mathrm{H}}+1 \times \mathrm{BE}_{\mathrm{C} \equiv \mathrm{C}}\right] \\

225=[1410+1 \times 330]-\left[2 \times 350+1 \times \mathrm{BE}_{\mathrm{C} \equiv \mathrm{C}}\right] \\

225=[1410+330]-\left[700+\mathrm{BE}_{\mathrm{C} \equiv \mathrm{C}}\right] \\

225=1740-700-\mathrm{BE}_{\mathrm{C} \equiv \mathrm{C}} \\

\mathrm{BE}_{\mathrm{C} \equiv \mathrm{C}}=815 \mathrm{~kJ} \mathrm{~mol}^{-1}

\end{array}$