Using the data provided, calculate the multiple bond energy \(\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)\) of a...
Using the data provided, calculate the multiple bond energy \(\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)\) of a \(\mathrm{C} \equiv \mathrm{C}\) bond in \(\mathrm{C}_{2} \mathrm{H}_{2}\). That energy is (take the bond energy of a \(\mathrm{C}-\mathrm{H}\) bond as \(350 \mathrm{~kJ} \mathrm{~mol}^{-1}\) ) \(2 \mathrm{C}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{HC}=\mathrm{CH}(\mathrm{g}) ; \Delta \mathrm{H}=225 \mathrm{~kJ} \mathrm{~mol}^{-1}\) \(2 \mathrm{C}(\mathrm{s}) \longrightarrow 2 \mathrm{C}(\mathrm{g}) ; \Delta \mathrm{H}=1410 \mathrm{~kJ} \mathrm{~mol}^{-1}\) \(\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}(\mathrm{g}) ; \Delta \mathrm{H}=330 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
Solution:
(i) \(2 \mathrm{C}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}(\mathrm{g})\)
\(\Delta \mathrm{H}=225 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
(ii) \(2 \mathrm{C}(\mathrm{s}) \longrightarrow 2 \mathrm{C}(\mathrm{g}) \Delta \mathrm{H}=1410 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
(iii) \(\mathrm{H}_{2}\) (g) \(\longrightarrow 2 \mathrm{H}\) (g) \(\Delta \mathrm{H}=330 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
From equation (i) :
$\begin{array}{l}
225=\left[2 \times \Delta \mathrm{H}_{\mathrm{C}(\mathrm{s}) \longrightarrow \mathrm{C}(\mathrm{g})}+1 \times \mathrm{BE}_{\mathrm{H}-\mathrm{H}}\right] \\
-\left[2 \times \mathrm{BE}_{\mathrm{C}-\mathrm{H}}+1 \times \mathrm{BE}_{\mathrm{C} \equiv \mathrm{C}}\right] \\
225=[1410+1 \times 330]-\left[2 \times 350+1 \times \mathrm{BE}_{\mathrm{C} \equiv \mathrm{C}}\right] \\
225=[1410+330]-\left[700+\mathrm{BE}_{\mathrm{C} \equiv \mathrm{C}}\right] \\
225=1740-700-\mathrm{BE}_{\mathrm{C} \equiv \mathrm{C}} \\
\mathrm{BE}_{\mathrm{C} \equiv \mathrm{C}}=815 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}$
\(\Delta \mathrm{H}=225 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
(ii) \(2 \mathrm{C}(\mathrm{s}) \longrightarrow 2 \mathrm{C}(\mathrm{g}) \Delta \mathrm{H}=1410 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
(iii) \(\mathrm{H}_{2}\) (g) \(\longrightarrow 2 \mathrm{H}\) (g) \(\Delta \mathrm{H}=330 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
From equation (i) :
$\begin{array}{l}
225=\left[2 \times \Delta \mathrm{H}_{\mathrm{C}(\mathrm{s}) \longrightarrow \mathrm{C}(\mathrm{g})}+1 \times \mathrm{BE}_{\mathrm{H}-\mathrm{H}}\right] \\
-\left[2 \times \mathrm{BE}_{\mathrm{C}-\mathrm{H}}+1 \times \mathrm{BE}_{\mathrm{C} \equiv \mathrm{C}}\right] \\
225=[1410+1 \times 330]-\left[2 \times 350+1 \times \mathrm{BE}_{\mathrm{C} \equiv \mathrm{C}}\right] \\
225=[1410+330]-\left[700+\mathrm{BE}_{\mathrm{C} \equiv \mathrm{C}}\right] \\
225=1740-700-\mathrm{BE}_{\mathrm{C} \equiv \mathrm{C}} \\
\mathrm{BE}_{\mathrm{C} \equiv \mathrm{C}}=815 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}$
















JEE Main
JEE Advanced
NEET UG
BITSAT
COMEDK
VITEEE
WBJEE
Join the conversation