Assuming that Hund's rule is violated, the bond order and magnetic nature of...
Assuming that Hund's rule is violated, the bond order and magnetic nature of the diatomic molecule \(\mathrm{B}_2\) is
Solution:
\(\mathrm{B}_2\) : Total electrons \(=10\)
Configuration : \(\sigma 1 s^2 \sigma^* 1 s^2 \sigma 2 s^2 \sigma^* 2 s^2 \pi 2 p_x^1=\pi 2 p_y^1\)
If Hunds rule is violated, then
\(\)
\sigma 1 s^2 \sigma^* 1 s^2 \sigma 2 s^2 \sigma^* 2 s^2 \quad \pi 2 p_x^2=\pi 2 p_y^0
\(\)
So, diamagnetic
\(\)
\text { Bond order }=\frac{6-4}{2}=1
\(\)
Chemical bonding
Conceptual
II
Configuration : \(\sigma 1 s^2 \sigma^* 1 s^2 \sigma 2 s^2 \sigma^* 2 s^2 \pi 2 p_x^1=\pi 2 p_y^1\)
If Hunds rule is violated, then
\(\)
\sigma 1 s^2 \sigma^* 1 s^2 \sigma 2 s^2 \sigma^* 2 s^2 \quad \pi 2 p_x^2=\pi 2 p_y^0
\(\)
So, diamagnetic
\(\)
\text { Bond order }=\frac{6-4}{2}=1
\(\)
Chemical bonding
Conceptual
II
















JEE Main
JEE Advanced
NEET UG
BITSAT
COMEDK
VITEEE
WBJEE
Join the conversation