All
BE/B.Tech
MBA/PGDM
MBBS
ME/M.Tech
B.Sc
BA
B.Com
BCA
BBA/BMS
B.Sc (Nursing)

Ranking

College ranked based on real data

Indiatoday - 1740
Collegedunia - 1406
IIRF - 1684
Outlook - 1318
NIRF - 1301
Top Ranked Colleges in India ›

Find Colleges

Discover 19000+ colleges via preferences

Best MBA colleges in India
Best BTech colleges in India
Discover Top Colleges in India ›

Compare Colleges

Compare on the basis of rank, fees, etc.

IIT Madras vs IIT Delhi
IIT Madras vs IIT Bombay
Compare Colleges ›

Exams

Know more about your exams

B.Com
B.Sc
B.Sc (Nursing)
BA
BBA/BMS
BCA
BE/B.Tech
Check All Entrance Exams in India ›

College Predictor

Know your college admission chances

JEE Main
JEE Advanced
CAT
NEET
GATE
NMAT
MAT
XAT
Find Where you may get Admission ›

Course Finder

Discover top courses in Indian Colleges 2025

BE/B.Tech - 963
MBA/PGDM - 1159
ME/M.Tech - 1221
B.Sc - 1052
Get Top Courses in Indian Colleges ›

Your Gateway to Top Colleges & Exams

Discover thousands of questions, past papers, college details and all exam insights – in one place.

Popular Colleges

Top Exams

JEE MainJEE Main
JEE AdvJEE Advanced
NEET UGNEET UG
BITSATBITSAT
COMEDKCOMEDK
VITEEEVITEEE
WBJEEWBJEE

The circuit shown in the figure contains an inductor \(L\), a capacitor \(C_0\),...

The circuit shown in the figure contains an inductor \(L\), a capacitor \(C_0\), a resistor \(R_0\) and an ideal battery. The circuit also contains two keys \(\mathrm{K}_1\) and \(\mathrm{K}_2\). Initially, both the keys are open and there is no charge on the capacitor. At an instant, key \(K_1\) is closed and immediately after this the current in \(R_0\) is found to be \(I_1\). After a long time, the current attains a steady state value \(I_2\). Thereafter, \(\mathrm{K}_2\) is closed and simultaneously \(\mathrm{K}_1\) is opened and the voltage across \(C_0\) oscillates with amplitude \(V_0\) and angular frequency \(\omega_0\).

Match the quantities mentioned in List-I with their values in List-II and choose the correct option.
\(\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 5\)
\(\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 3 ; \mathrm{S} \rightarrow 5\)
\(\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 4\)
\(\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 5 ; \mathrm{R} \rightarrow 3 ; \mathrm{S} \rightarrow 4\)
Solution:

(P) When \(K_1\) is closed current in \(R_0\) is \(I_1\) At \(\mathrm{t}=0\); circuit will be

\(\begin{aligned} & \mathrm{I}_1=0 \\ & \mathrm{P} \rightarrow(1)\end{aligned}\)
(Q) After long time inductor behave as a wire so \(\mathrm{I}_2\)

\(\begin{aligned} & \mathrm{I}_2=\frac{20}{5}=4 \mathrm{~A} \\ & \mathrm{Q} \rightarrow(3)\end{aligned}\)
(R) When \(\mathrm{K}_2\) is closed and \(\mathrm{K}_1\) open

\(\begin{aligned} & \omega_0=\frac{1}{\sqrt{\mathrm{LC}}} \\ & \omega_0=\frac{1}{\sqrt{25 \times 10^{-3} \times 10 \times 10^{-6}}}=\frac{1}{5 \times 10^{-4}} \\ & \omega_0=2 \times 10^3 \mathrm{rad} / \mathrm{s} \\ & \omega_0=2 \text { kilo-radian } / \mathrm{s} \\ & \mathrm{R} \rightarrow(2)\end{aligned}\)
(S) Now \(\mathrm{K}_2\) is closed and \(\mathrm{K}_1\) open

\(\begin{aligned} & \frac{1}{2} \mathrm{LI}_2^2=\frac{1}{2} \mathrm{CV}_0^2 \\ & 25 \times 10^{-3} \times(4)^2=10 \times 10^{-6} \times \mathrm{V}_0^2 \\ & \mathrm{~V}_0^2=2500 \times 16 \\ & \mathrm{~V}_0=50 \times 4=200 \mathrm{~V} \\ & \mathrm{~S} \rightarrow(5)\end{aligned}\)